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In  a  mathematics  methods  course  for  pre-service  teachers,  carefully  designed  
activities made deep and interconnected mathematics quickly available requiring no 
pre-requisite  content  knowledge.  Using  brightly  colored  1-meter  edge  length  
equilateral  triangles that  can be quickly assembled and reassembled into a wide  
range of polyhedra by small groups of students, high levels of student engagement  
and collaboration were achieved. The van Hiele (1976) Model of Geometric Thought  
and NCTM (2000) process standards were explicitly referenced in the course.
INTRODUCTION
The  challenge  of  developing  deep  content  knowledge  and  pedagogical  content 
knowledge (e.g., Shulman, 1986; Ball & Bass, 2000) for both in-service teachers and 
pre-service teacher candidates has been expressed for some time. We have achieved 
this, to new levels, with a unique inquiry experience to develop visualization and 
deep,  analytical  content  knowledge  as  well  as  pedagogical  knowledge  within  an 
urban pre-teacher mathematics methods course. The triangles that facilitated this are 
equilateral, 1-meter edge length, resilient, lightweight and brightly colored, and can 
be quickly assembled and reassembled into a wide range of polyhedra. 
THEORETICAL FRAMEWORKS
Mathematics embodied in the manipulatives
The hidden mathematics framework suggested by Abramovich and Brouwer (2006) 
entails finding, creating and working with mathematical problems that connect across 
the  mathematics  curriculum.  This  helps  prospective  teachers  make  relevant 
connections between their undergraduate mathematics courses and the K-12 school 
curriculum. Their research entails integration of rigorous mathematics activity with 
technology-assisted learning in expert-novice, socially mediated classroom settings 
(Vygotsky,  1986).  We claim that  a  similar  learning environment  can be fostered 
through carefully applied manipulatives such as the giant triangles. Furthermore, the 
triangles relate physically to learners through their kinesthetic character and aesthetic 
appeal. The giant triangles, as constructed, have powerful inbuilt mathematics that 
has  to  emerge  when  learners  interact  with  them  using  very  carefully  designed 
activities. The learners’ use of the materials changes as their knowledge develops 
observably shifting from concrete to abstract through interaction with the materials 
(M. L. Connell, personal communication, December 6, 2010).
van Hiele Model of Geometric Thought
The van Hiele Model of  Geometric Thought  (van Hiele,  1976),  in differentiating 
increasingly complex levels of geometric thinking, is a useful framework to describe 
the evolving shape-building activities in this study. Additionally, its understanding 



was an explicit pedagogical goal for the pre-service teachers in the course. Reflection 
on the activities contributed to learners’ pedagogical appreciation of the model.
Our activities are introduced at the Visual Level (What do you notice?) but quickly 
move learners to the Descriptive/Analytical Level (What properties can you specify? 
For example, how many vertices, edges and faces does this particular figure have?) 
and Relational Level (Which figure has this many faces? Or, How is this structure 
like that  structure?),  in which learners  begin to abstract and generalize.  No prior 
knowledge or experience is needed to engage in these activities, which reveal and 
develop deep mathematics  without  interference  from learners’  prior  mis-  or  pre-
conceptions.  Learners  collaborate  and  cooperate  spontaneously  in  building  their 
figures, facilitated by the size and construction of the triangles. 
METHOD AND CONTEXT
University and course context
The university, one of the most ethnically diverse liberal arts institutions in the mid-
south-western United States, is a federally designated Minority Serving Institution. It 
provides  4-year  degree  programs  and  has  an  open  enrolment  policy.  A  large 
percentage  of  its  undergraduate  students  are  the  first  college  attendees  in  their 
families, and work full-time while attending college. The teacher certification/degree 
program  requires  students  to  take  at  least  two  mathematics  content  courses  for 
teaching prior to their mathematics methods course, which is typically offered during 
their third year of study. Many students take these content courses at collaborating 
community colleges and then transfer to the university to complete their bachelors’ 
degrees. The content courses tend to be factual and non-exploratory in structure.
The pre-service teacher methods courses are limited to no more than 30 participants 
and  meet  face-to-face  for  2.5  hours  per  week  over  14-15  weeks.  While  the 
curriculum  for  the  methods  courses  spans  all  mathematics  content  strands,  the 
geometry strand focuses on understanding the van Hiele model through interactive 
experience, integration of the National Council of Teachers of Mathematics (NCTM, 
2000) process standards, and connections among the mathematics content strands.
Research method
The study is guided by the following research questions:
1) How do the triangle activities impact learners? 
2) How do learners relate the triangle experiences to the van Hiele model?
Data  consist  of  instructor  field  notes,  students’  online  discussion  comments,  and 
photographs. A narrative approach is utilized to illuminate the findings.
LEARNING TRAJECTORY
We share  a  learning  trajectory  that  was  successfully  enacted  in  ten  mathematics 
methods classes for elementary and for middle-grades pre-service teachers in single 
160-minute class sessions during two successive semesters. 



Deepening the mathematics through pyramid construction
The trajectory began with a simple visual level activity: How many triangles can one 
fit around a given point laying flat on the floor? Learners predict and then build the 
figure.  What happens if  successive triangles are removed and the newly exposed 
sides are connected (see Figure 1)?

Figure 1. Triangles around a point and the three folded pyramids
This activity integrated a review of naming conventions for polygons and properties 
of  the  particular  polygons  and  pyramids  that  emerged  from  this  construction. 
Learners considered which pyramids might have the greatest and least volumes given 
that their base areas increased while their altitudes decreased with base side number 
(from 3 to 5). From a pedagogical perspective this problem was pointed out to be an 
alternate learning trajectory that could be enacted at this point in the lesson. 
From pyramids to Platonic solids – Visual to descriptive level transition
Learners’ next task was to attach additional triangles to the pyramids to form figures 
with the same number of regular triangular faces at each vertex. Figure 2a shows the 
three regular polyhedra that can be constructed using equilateral triangles. Initially, 
group members paid close attention to the number of faces at particular vertices but 
did not notice incongruence occurring at other vertices as they added triangles to the 
growing  figure.  Figure  2b  shows  some  typical  intermediate  figures  that  learners 
constructed  as  they  worked  toward  building  the  regular  icosahedron.  As  the 
incongruent  vertices  were  pointed  out,  learners  began  to  attend  more  closely  to 
properties of the figure, i.e., to the number of faces at every single vertex, rather than 
to its global appearance. In this way, the manipulative itself carried the mathematical 
development initially at the visual level toward the descriptive level. 

Figure 2a. Three regular polyhedra Figure 2b. Intermediate figures
Learners shared their insights facilitated by key questions dealing with comparing 



and contrasting the three regular polyhedra. These included visualizing the figures 
from different perspectives, such as when lying on a face versus standing upright on 
a vertex (Figure 3). The light weight of the manipulative allows one to lift such very 
large figures into the air so that one can actually stand inside them. A triangle was 
deliberately removed from the icosahedron (Figure 2a) so that  each person could 
experience being inside it. This is a unique mathematical and aesthetic experience 
that can rarely be made available with other manipulatives. 

Figure 3. Lying on a face versus standing upright on a vertex
Symmetry and enumeration – Descriptive to relational level transition
Learners used the symmetries in the upright octahedron and icosahedron to justify 
their enumeration of faces.  Enumeration of vertices and edges also evolved from 
symmetry considerations. 
Generalization using other regular polygons – Relational level development
To further develop the entire visualization and enumeration process, the instructor 
asked the class to consider what would happen if only 2 triangles were connected. 
Then,  what  can  be  constructed  using  other  regular  polygons,  such  as  squares, 
pentagons, hexagons, heptagons, etc. Only two new regular polyhedra, the cube and 
the dodecahedron, could be constructed.
Number patterns embodied in the Platonic solids
Using Polydrons™, individual learners constructed the cube and dodecahedron and 
then the whole class worked to complete the enumeration table as shown in Table 1. 
Symmetry again played an important role enumerating faces, vertices and edges for 
the new figures. Field notes from one session indicated that three particular patterns 
were discovered:
1) As listed in Table 1, as the number of faces increases, the number of vertices and 
edges also tend to increase; 
2) the numbers are all even; 
3) the numbers of vertices and faces switch for the cube and octahedron, and for the 
dodecahedron and icosahedron, while their edge numbers are the same; and,
4) the tetrahedron does not have a switch partner since it has the same number of 
faces as vertices. 
These relationships were typical of those emerging across all classes. The concept of 
duality was revisited geometrically later in the lesson.



Name Vertices Edges Faces
Tetrahedron 4 6 4

Hexahedron (Cube) 8 12 6
Octahedron 6 12 8

Dodecahedron 20 30 12
Icosahedron 12 30 20

Table 1. Enumeration of vertices, edges and faces
Doubling the tetrahedron – Descriptive and relational levels
The next challenge involved building a tetrahedron with doubled edge lengths. They 
noticed that a useful net for building a smaller, unit-sized tetrahedron was a larger, 
doubled edge length triangle consisting of  4 unit  triangles.  Therefore  they would 
need four of these for the larger tetrahedron, 16 unit  triangles in all.  Scaling the 
lengths by a factor of 2 implies a scale factor of 22 for a “doubled” figure’s surface 
area. For this figure, the net itself provided an opportunity to examine the sum-of-
odd-numbers series shown in Figure 4.

Figure 4. Doubling the edge lengths of the basic tetrahedron
Next, they were asked to predict how many unit-size tetrahedra would fill the larger 
tetrahedron.  Prediction  activities  have  been  documented  to  enhance  mental 
visualization (e.g., Battista, 1999). Learners predicted 4, 5, 6, or 7 unit-size tetrahedra 
would be needed to solve this problem, the majority choice being 5. The durability 
and construction of the triangles provides opportunities to examine these types of 
figure in novel ways, such as from the inside, that most other manipulatives cannot 
provide.  Learners  initially  inserted four  smaller  tetrahedra  into the spaces by the 
vertices  of  the  larger  figure.  Then,  they  attempted  to  fill  the  center  region  with 
additional tetrahedra. Eventually someone realized that tetrahedra cannot tessellate 
this  space.  Some  classes  built  the  figure  that  fills  the  space  by  inserting  loose 
triangles and connecting them together in place. Others recognized that the triangular 
base  on  the  floor  was  rotated  180  degrees  relative  to  the  triangular  base  at  the 
figure’s midlevel, a property of the octahedron. The octahedral skeleton is visually 
evident in the photograph in Figure 4. At this point, the instructor referred back to the 
scale factor concept, that doubling the edge lengths should result in an 8-fold scaling 
of  volume.  Thus,  the  larger  tetrahedron  consisted  of  4  smaller  tetrahedra  and  1 
octahedron,  which  itself  occupies  a  volume  equivalent  to  4  smaller  tetrahedra. 
Referring  back  to  the  earlier  problem  of  comparing  pyramid  volumes,  the 
octahedron’s volume is equivalent to the combined volumes of 2 square pyramids 
(see Figure 3). Therefore, the square pyramid’s volume is equivalent to the combined 
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volumes of 2 smaller tetrahedra. A different learning trajectory can be enacted to 
confirm  this  finding.  Interconnections  across  the  mathematics  curriculum  were 
constantly becoming apparent as this trajectory progressed.
Platonic solids duality exposed – Relational level
The final activity involved attaching small tetrahedra 
to  the  central  triangles  on  the  doubled-edge  length 
tetrahedron’s faces. When stood upright on one of its 
vertices this figure looked like two intersecting large 
tetrahedra,  one  pointing  upward  and  one  pointing 
downward. Learners used masking tape to connect the 
vertices of this stellated figure (see Figure 5). To their 
surprise,  the  tape  formed  the  edges  of  a  cube. 
Knowing that the interior of this figure was the octahedron (from the previous filling 
activity), the class was able to see that the centers of each face of the cube were the 
vertices of the interior octahedron. Referring back to Table 1, the switching of the 
vertices and faces of the cube-octahedron duals now made sense. 
The class then viewed a very short animated video clip on the stellated octahedron 
that exemplifies the duality properties of the cube and octahedron. 
Learner reflections
A selection of unedited learner quotations, from online reflection discussions, shows 
a high level of learner engagement, collaboration, deeper thinking and understanding:

I  really enjoyed that  the class worked together to figure the lesson out.  It  was not a 
teacher lecturing and the students un-engaged.

It had the whole class involved. It seemed to get more input from individuals whereas if 
we were all sitting down just a few people would have responded.

I got to walk inside the icosahedron! I think children and young adults would love this 
experience because it is basically playing while learning.

The value of this activity is not only that it is hands-on but that it also reaches beyond the 
surface of just looking and playing, the class could explore in depth.

I actually got the concept we were learning from the big triangles. I'm not sure if it is 
because it was more hands on or because I was working with my peers, and they helped 
me understand.

On the day this lesson took place I had no idea how many aspects of education it was 
going to cover. I was also very surprised on how large this project was, this was not a bad 
thing it played an important role in what was being taught and how.  Not only was this 
project informative on how to teach our future students but it was full of application of 
how to teach in large groups.  So looking back and taking in what this lesson was about it 
was about math, but it was about so much more.

… it shows how if you have a flat shape and you take away a triangle it can turn it in to a 

Figure 5. Stellated octahedron



polyhedron.   It  was  amazing  just  by  manipulating  a  few triangles  could  completely 
change the properties of a shape.

This  project  also can help create a  learning community because this  cannot  be  done 
without team work.  All of the students have to pitch in or else the lesson will not reach 
its full potential.

Many students mentioned that the lesson was fun. This suggests that the hands on 
play aspect of the giant triangles and collaboration they engender have an affective 
advantage associated with successful learning in carefully planned activities. 
CONCLUSIONS
Developing deep content  knowledge and pedagogical  content  knowledge for  pre-
service teacher preparation can be challenging.  Several important points about how 
we achieved this development to new levels with this trajectory include:
1) Substantial, deep, and interconnected mathematics, as described by Abramovich 
and Brouwer (2006) is made available quickly and effectively using the triangles. 
These activities reinforce the NCTM (2000) process standards of communication, 
problem solving, connections, reasoning and justification, and representation while 
interconnecting with other content strands (measurement and algebraic thinking).
2)  No  entry-level  content  knowledge is  required  and  transfer  from prior  content 
courses has generally not been observed. In attempting to bring highly interactive 
and interconnected mathematical experiences to our methods classes, a big challenge 
is  to overcome learners’  attitudes about this  intense form of teaching since most 
learned to “do math” in very traditional “copy the model and practice” ways. Thus, 
weakly  conceptualized  mathematical  knowledge  may  intrude  on  the  learner’s 
openness toward deeper mathematical understanding and pedagogy. However, the 
triangles immediately engage learners, who remain open-minded to the mathematics 
and to the methods as new activities are introduced.
3) High levels of student engagement and collaboration are achieved associated with 
hands on play and figuring out activities, in a positive affective social context. For 
example  learners  did  not  give  up  or  express  frustration  or  discouragement  from 
making ‘intermediate figures’ that needed correcting as in Figure 2b. Rather, they 
enjoyed the teamwork required to complete the activity. This shows how the use of 
the  triangles  facilitates  social  mediation  of  mathematical  thinking  by  requiring 
negotiation of co-operative actions through visualization. Such negotiation promotes 
communication  at  deeper  levels  of  geometric  thought,  even  though  the  learning 
objectives were relatively simple (e.g., Add more triangles to the figure so that each 
vertex contains the same number of triangular faces.)
4) Use of these manipulatives may avoid some of the affective pitfalls that occur 
when introducing challenging mathematical problems. Researchers have noted the 
importance of ‘the struggle’ and often-associated ‘perplexity’ when extending one’s 
mathematical knowledge through difficult problems (Hiebert & Grouws 2007). With 



this trajectory, we believe that the aesthetic and size appeal of the triangles, and the 
personal commitment to the collaborative constructions, enabled learners to persist, 
working in groups, until achieving success. At no point did they give up. Even during 
the enumeration activity, relying on mental imagery, all learners participated with 
enthusiasm transferring the knowledge just gained though the hands-on experience. 
Future work
These activities will be placed earlier in the course to help open learners’ minds to 
deep  mathematics  and  conceptual  learning  methods.  Future learners  will  write 
additional reflections on how the different van Hiele levels were addressed across all 
course-based geometry activities. Also, work has begun with a relatively new teacher 
in a struggling urban middle school.  Her 6th graders have mainly had skill-driven 
mathematics experiences aimed to raise test scores. The triangles have brought them 
enthusiasm through an initial activity, to ‘build something interesting and beautiful’. 
We will continue to develop their mathematical knowledge and dispositions toward 
doing mathematics, while co-teaching with their teacher to develop her pedagogy.
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