
Creative Learning with Giant Triangles

Dr Simon Morgan
University of New Mexico, New Mexico Consortium

morga084@gmail.com

Dr Jacqueline Sack
University of Houston-Downtown, Department of Urban Education

sackj@uhd.edu

Dr Eva Knoll
Mount Saint Vincent University, Faculty of Education.

eva.knoll@msvu.ca

Abstract

Participants will review, explore and develop geometric concepts and vocabulary, through guided discovery, building polyhedra 
with giant brightly-colored connectable equilateral triangles. Activities will be geared for teachers of all levels. Learning issues 
and instructional strategies are related to teacher-student ‘hidden contracts’ and the Van Hiele Model of Geometric Thought.



1 Introduction

We shall discuss developmental and instructional issues (section 2), instructional strategies (section 3) and 
mathematical content (section 4) of activities using the giant triangles. The term ‘instructor’ will be used 
for the person(s) supervising the workshop activities and ‘students/participants’ for people taking part in 
the activities under the supervision of the instructor.

1.1 Scope of the Workshop. Participants will experience mathematical learning through creative activity 
using giant brightly-colored connectable equilateral triangles. They will assemble them into polyhedra 
which  can  be  experienced  from both  inside  and  out.  An  essential  property of  these  triangles  is  the 
flexibility with which they connect. Whole shapes can deform as one part of the shape is changed (figures 
4 and 5), and a wide variety of shapes can be made, unconstrained by rigid dihedral angles along edges.

The core workshop activities will include making pyramids and the Platonic solids with triangular 
faces;  the  tetrahedron,  octahedron and icosahedron.  These  will  be  used to  illustrate  instructional  and 
developmental  issues  (section  2),  instructional  strategies  (section  3)  and  for  in  depth  mathematical 
discussion of the topics of regularity, symmetry and counting (section 4). Further activities will depend on 
time and the way the workshop develops. There will be a discussion of ways of using and extending these 
learning activities in the classroom and the use of alternative materials for all grade levels. These include 
use of manipulatives, such as card or Polydrons™, which can be assembled into polyhedra with different 
shaped faces.

1.2 Background of Giant Triangle Activities. The photographs shown here are from course activities for 
candidate teachers at the University of Houston-Downtown, Department of Urban Education and from a 
class at  an urban middle school of  the Houston Independent  School  District,  both led by the second 
author. An account of the materials, a series of lessons and work with low performing students is given in 
[2]. The activities have been developed over a 10-year period by Jacqueline Sack, Eva Knoll and Simon 
Morgan (see [1]  [2] and [3]) and have been used for  in-service teacher workshops,  and mathematics 
methods classes.

2 Developmental and Instructional Issues

2.1 The Student-Teacher ‘Hidden Contract’. The challenge of developing deep content knowledge and 
pedagogical content knowledge [e.g., 5, 6] for both in-service teachers and pre-service teacher candidates 
has been expressed for some time. Abramovich and Brouwer [7] refer to the ‘hidden contract’ [8], an 
institutional structure between teacher and students in which students are expected to sit quietly, do the 
work of emulating the teacher’s examples and refrain from asking non-routine questions or displaying 
off-task behavior. The latter, in the context of the hidden contract, is never considered to occur when 
students are bored or unable to perform expected tasks. Abramovich and Brouwer [7] provide examples 
of curricular activities that challenge teachers or teacher candidates to re-write their hidden contracts. 
Their  examples include  mathematical  problems that  interconnect  mathematics  strands  and delve  into 
much  more  complex  concepts  than  those  that  are  traditionally  taught  in  elementary  or  secondary 
classrooms. Our giant  triangle activities are designed to challenge the traditional hidden contract that 
many participant teachers who attend our sessions may still embrace.

2.2 The Van Hiele Model of Geometric Thought. The learning and instructional issues in the workshop 
will also be related to the Van Hiele Model of Geometric Thought initially through formal introduction to 
the Van Hiele visual, descriptive and relational levels (see [4]: p. 53). The model has 5 sequential levels; 
visual,  descriptive,  relational,  deductive  and  rigor.  The  last  two  concern  systems  of  theorems  and 



comparing different geometries such as Euclidean, spherical and hyperbolic. Here is a brief summary of 
the first three levels in the Van Hiele Model:

Visual Level: The student
– identifies, compares and sorts shapes on the basis of their appearance as a whole.
– solves problems using general properties and techniques (e.g., overlaying, measuring).
– uses informal language.
– does NOT analyze in terms of components.

Descriptive Level: The student
– recognizes and describes a shape (e.g., parallelogram) in terms of its properties.
– discovers properties experimentally by observing, measuring, drawing and modeling.
– uses formal language and symbols.
– does NOT use minimum sufficient definitions. Lists many properties.
– does NOT see a need for proof of generalizations discovered empirically (inductively).

Relational Level: The student
– can define a figure using minimum (sufficient) sets of properties.
– gives informal arguments, and discovers new properties by deduction.
– follows and can supply parts of a deductive argument.
– does NOT grasp the meaning of an axiomatic system, or see the interrelationships between net-

works of theorems.

The activities will illuminate how development through the levels may progress in the context of 
polyhedron  attributes  using  guided  discovery  and  class  discussion.  This  is  in  accordance  with  the 
instructional cycle described by the Van Hiele model [4].

3 Instructional Strategies

The following instructional  strategies will  be incorporated into the workshop. Teachers who embrace 
traditional  instructional  approaches  often  begin  to  undergo  belief  changes  when  engaged  in  these 
activities.  This  increases  the  potential  for  them to  rewrite  their  ‘hidden  contracts’ about  their  own 
classroom norms.

3.1 The instructional cycle of guided discovery and instructor lead discussion. In accordance with the 
Van Hiele instructional cycle [4], this starts with a discussion of the students′ existing knowledge of con-
cepts and formal vocabulary as the instructor sets the context for the activities.  The instructor then pro-
vides  instructional  activities  in  which students  explore  and discuss  concepts,  preferably within  small 
groups, and come to a consensus about the concept, or complete the task. The instructor’s role is to facili-
tate, provide hints, and ask scaffolding questions rather than to provide answers. Students should con-
struct their own solutions and knowledge from their own thinking rather than rely on the teacher for direct 
information. After the class has completed the activities, the teacher leads a whole class discussion. Each 
group shares its findings, and, through discussion, misconceptions are re-conceptualized. Even if groups 
share the same conclusions, much can be gained when students hear explanations in different words or 
from slightly different viewpoints.

3.2 Instructions are given in terms of feature properties. We may say ‘make a shape with 5 triangles at 
each vertex’ rather than showing an example and saying ‘make one that looks like this’. The difference is 
that in imitating a shape students/participants use visual cues of symmetry, number and so on without 
paying  specific  attention  to  them.  With  our  instructions,  the  students/participants  may not  know in 



advance what the shape will look like, and so will have to check local properties to complete the task. 
Trial and error is usually involved (figures 4, 5, 6). When a problem emerges participants must negotiate 
how specific faces, edges and vertices should be changed to fix it, whilst attempting to minimize the 
amount of back stepping. In terms of the Van Hiele Model, this promotes development from the visual to 
the descriptive level in that participants actively internalize properties of the particular figure that they are 
creating.

3.3 Construction using flexibly connecting large scale materials. This forces people to work together 
to hold, build and adjust shapes, leading to negotiation between students/participants. Also, as it may be 
physically  impossible  to  see  the  whole  shape  while  working  on  one  part,  errors  are  made.  Active 
negotiation,  usually  including  reasoning  and  justification  helps  participants  solidify  their  Van  Hiele 
descriptive level knowledge about the particular figure. 

3.4 Discussion of definitions and specific properties. Instructor led discussion of shapes (figures 2, 6 
and 9) brings out observation and awareness of details within each shape (descriptive level). Comparison 
of figures leads to development of the relational level. For example, which shapes have parallel faces 
(figure 7),  or have antipodal  faces or vertices? This provides an opportunity to discuss definitions of 
faces, edges and vertices in polyhedra as compared to polygons. Note that different terminology may be 
used in different educational systems; edges of polygons may be called sides, and vertices may be called 
corners. 

There is scope to ask participants to give as many differences as they can find between constructed 
shapes; for example (section 4.2) comparing pentagonal based pyramids with triangular (figures 2 and 3) 
and with square based pyramids. Features to be mentioned here include height, base shape, base area, 
slopes of sides or edges, base width as well as how many triangles meet at the top vertex. This requires 
students/participants  not  only to  see  that  the  shapes  look different,  but  also  to  identify and describe 
specific properties that are different. Requiring students/participants to suggest and justify the differences 
themselves rather than have the instructor list them has a beneficial impact on our goal to rewrite their 
traditional ‘hidden contract’. Alternate definitions of regularity using different properties (section 4.4) can 
also be discussed, which promotes development of geometric thinking at the relational level.

3.5 Advantages of large-scale models for discussion and observation. Everyone can get a clear view of 
a shape and see and touch its features. Shapes can be held by an individual edge or vertex, and a whole 
hand can touch just  one face.  This  means  the discussion can clearly focus on,  and involve ideas  or 
questions about, feature details and how they inter-relate. The scale also enables complex constructions to 
be made clear, in visual and tactile ways, as shown in figures 2 and 6-9.

The scale of the shapes also means that as you get closer, or inside, or further away, their appearance 
may change, which can emphasize details and relationships of the parts to the whole. Figure 7 shows 
someone  sitting  inside  an  icosahedron.  The  way  a  shape  is 
positioned in space also emphasizes different features.  Figures 6 
and 7 show the same polyhedron with central antipodal vertices top 
and  bottom (figure  6)  and  with  central  antipodal  faces  top  and 
bottom (figure 7). 

This  provides  an  opportunity  to  demonstrate  rotational 
symmetry about the observed vertical axes going through vertices, 
edge  midpoints,  centers  of  faces,  and  the  centers  of  the  whole 
shapes. The turn and stop game (figure 10) is an interactive way to 
investigate the rotational symmetries of polyhedra. The polyhedron 
is rotated from an initial position, by students walking around with 

 

Figure 10:
Turn and stop game



it, until it reaches the point where it looks the same and everyone shouts 'Stop!' Reflectional symmetries 
are best shown by holding the shape so the plane of symmetry is either horizontal (like reflection in 
water) or vertical (like a person’s face). For example with a tetrahedron, the former is shown by holding it 
with one edge vertical and the latter when it is positioned with one pair of opposite edges horizontal on 
the top and bottom.

3.6 Encouragement of students/participants to ask their own questions and build their own shapes. 
The way in which the assembly process requires them to work out how to construct and negotiate can 
give  a  sense  of  ownership  of  the  activity which permits  participants  to  think of  their  own goals  or 
questions. Questions from previous participants have included: ‘Does there need to be at least a 180º 
angle on a vertex so it is 3-dimensional when it closes up?’ (see figures 1 to 3: Angle Sum), and ‘Is every 
antiprism always the center of a [pyramid]?’ (as the octahedron is 
in the center between four tetrahedra, filling a double-edge length 
tetrahedron, figure 8). 

The participants′ personal investment in solving construction 
problems  in  the  less  traditional  classroom setting  gives  them a 
stake in deciding what to do next such as in the open-ended artistic 
and mathematical  curiosity-driven  discovery activity (figure  11). 
The availability of a physical manipulative model in space which is 
readily  constructed  into  a  wide  variety  of  shapes  facilitates 
exploration of a wider range of shapes. A description is given in [1] 
of activities in an elementary school which successfully combined 
the play aspect of the giant triangles with the mathematical concept 
explorations that the instructors overlaid.

4 Mathematical Content of the Activities and Extension Activities.

The following activities all extend participant’s knowledge toward the van Hiele relational level in that 
they compare and contrast a variety of different, but related, figures attending to particular properties.

4.1 Polygonal regularity. The giant triangles are introduced with emphasis on them all being the same 
size and shape; equilateral triangles having equal length sides and equiangular in having equal angles. 
Note that a square is neither the only equiangular quadrilateral nor the only equilateral quadrilateral.

4.2 Angle sum and pyramids. Figures 1, 2 and 3 give snapshots of activities that develop a transition 
from polygons to polyhedra when 6 triangles are placed around a point on the floor and then connected 
together. When this is repeated with less and less triangles, a set of pyramids is created as 5, 4 and 3 
equilateral triangles are joined together around a point and placed upright on the floor as in figure 3. As 
mentioned above (section 3.4), participants are then asked to identify distinguishing properties of regular-
based right-pyramids (symmetrical), including height, base shape, base width, base area, volume, slope of 
faces, slope of edges etc. This also focuses on the ‘angle sum’ at an individual vertex. Angle sum at a 
vertex is the angle swept by the faces of the polyhedron touching the vertex, and is clearly seen when the 
vertex  is  opened  up and  laid  flat  in  the  floor.  For  a  regular  tetrahedron it  is  180º  (three  equilateral 
triangles) at each vertex, for a cube, 270º (three squares) at each vertex, and so on. 

If the angle sum is less than 360°, then the vertex will become three dimensional, in that it will not 
lay flat on the floor when the faces are connected, unless faces are folded up together flat. When only two 
faces are used they must join together back to back and a degenerate case is created. Vertices with an 
angle sum greater than 360° are shown in figure 9 on the stella octangula. Situated in the centers of the 

Figure 11: Curiosity-driven 
discovery; 'we wanted to see  
how the shapes fit together'



faces of the circumscribing cube, they have 8 equilateral triangles, giving an angle sum of 480º. Further 
extensions that explore angle sum more deeply for higher grade levels are given in [2] (lessons 5 and 6).

4.3 Volume and space filling. A possible extension activity is to quantify the volumes of the pyramids. 
This can be done at lower levels by direct measurement and at higher levels through the use of formulae, 
the Pythagorean Theorem and trigonometric ratios. An intermediate level approach using volume scaling 
(see [2], lesson 1) is given by the tetrahedral octahedral space filling decomposition of a doubled-edge 
tetrahedron. The central octahedron (figure 8) is comprised of two square pyramids. Figures 8 and 9 show 
configurations facilitated by the lecturer to demonstrate ways in which polyhedra can fit together. Figure 
11 shows students trying their own experiment to see how polyhedra fit together.

An additional  activity that  focuses on space filling uses parallelepipeds.  A parallelepiped can be 
constructed by joining a tetrahedron to each of two opposite faces of an octahedron. It will then have six 
faces  that  are  rhombi,  each composed of  two coplanar  triangles.  If  many are  produced,  they can be 
stacked  to  demonstrate  space  filling.  As  each  is  made  up  of  an octahedron and  two tetrahedra,  this 
demonstrates that octahedra and tetrahedra together fill space in a 1:2 ratio. They can also be viewed as 
cubes which have been deformed, giving us a connection between space filling by cubes and space filling 
by octahedra and tetrahedra.

4.4 Definitions of regularity using number and symmetry.  Figures 4 and 5 show trial  and error in 
making ‘a polyhedron with 5 triangular faces at each vertex’. This type of instruction for each Platonic 
solid emphasizes certain regularity properties of the Platonic solids and differences between them; the 
same number of identical regular polygonal faces at each vertex for each solid. Discussion of properties 
can be developed into discussion of definitions. 

As an extension, alternative definitions of regular polygons and polyhedra, in terms of minimum 
sufficient conditions can be explored. For example ‘4 identical equilateral triangular faces at each vertex’ 
is  sufficient  to  define  a  regular  octahedron.  Alternatively,  in  terms  of  rotational  and  reflectional 
symmetries of the whole shape, we can, for example investigate if we can define a regular tetrahedron as 
‘a polyhedron having 3 and only 3 planes of reflectional symmetry through each vertex and the center of 
rotation of each face’.

In general the reflective and rotational symmetries of a Platonic solid are as follows. Consider a 
polyhedron where at each vertex m regular polygonal faces come together, each having n edges or sides. 
There  are  n,  2  and  m planes  of  reflection  through  each  face  midpoint,  edge  midpoint  and  vertex 
respectively. Also there are rotational symmetries of order n, 2 and m through each face midpoint, edge 
midpoint and vertex respectively. A rotation of order  n is a rotation through an angle of (360/n)°. All 
planes of reflective symmetry and axes of rotational symmetry pass through the center of the shape.

Definitions of polyhedral regularity in terms of face shape and total numbers of faces and edges can 
be seen to work for some Platonic solids, such as the tetrahedron (‘4 equilateral triangular faces’ or ‘6 
edges with equilateral triangular faces’). This also works for the cube and dodecahedron, but not for the 
octahedron  or  icosahedron.  Irregular  polyhedra  can  be  made  with  any  even  number  of  equilateral 
triangular faces greater than 4. We see below (section 4.5) why we cannot make a polyhedron with just an 
odd number of triangular faces.

4.5 Counting. Figure 6 shows the exploration of strategies to count faces and edges using subdivision and 
rotational symmetry of the icosahedron. The top vertex is the center of a cap of 5 triangles. Opposite it, on 
the floor is the bottom vertex in the center of another cap of 5 triangles. The remainder of the icosahedron 
is a central ring containing 5 triangles pointing up and 5 pointing down. This gives a total of 20 triangles 
and the way they form groups of 5 (top cap, bottom cap, central ring faces pointing up and central ring 



faces pointing down), highlights the rotational symmetry about each vertex. 

Consider what happens to the faces when this icosahedron is rotated by 72° (1/5 of a whole turn, i.e. 
(360/5)°) about the vertical axis through the top vertex and bottom vertex (figure 6). Each face will be 
rotated to a different face within its aforementioned group of 5. If this is repeated then each face will 
cycle through all the other faces in the group and then on the fifth rotation return to its original position. 
So the total number of faces, made up of groups of 5, must therefore be divisible by 5. This illustrates a 
general counting rule:

If a rotation of a polyhedron, about a certain axis by a certain angle in a given direction, moves each  
face to a different face and also all faces first get back to their original positions after n of these  
rotations, then the faces form groups of n and so the total number of faces will be divisible by n.

However this does not apply with a 1/3 rotation (120°) of the icosahedron about an axis through the 
center of rotation of a face. Even though it is a rotational symmetry of the whole shape, it does not move 
each face to a different face. However we can apply the rule using vertices or edges instead of faces, for 
this  rotation.  The icosahedron has 20 faces (divisible by 5),  30 edges (divisible  by 5 and 3) and 12 
vertices (divisible by 3).  The counting rule can be verified for each of these numbers using different 
rotational symmetries.

A subtlety emerges when counting edges: each edge of a polyhedron is shared by two adjacent faces. 
If we start to count the edges of an icosahedron by saying ‘there are 3 sides for each of the 20 triangular 
faces, and we get 3x20=60’. However, the sharing means we also have to divide by 2 to obtain 30 edges. 
An extension activity is to count the numbers of faces and edges of as many polyhedra with triangular 
faces as possible to lead up to and verify the calculation. We can observe that multiplying a whole number 
by 3/2 in this way does not give a whole number of edges if we start with an odd number of faces. This 
leads to a proof that all polyhedra with triangular faces must have an even number of faces, because a 
polyhedron cannot have a half edge (see [2], lesson 4).

4.6 Archimedean solids, stellation and duality. The Archimedean solids contain faces of more than one 
type of regular polygon, such as the cube octahedron containing both squares and triangles. The edge 
skeleton of a cube octahedron can be constructed with the giant triangles using 6 square base pyramids to 
create  the  squares.  If  the  pyramids  point  inward  then  the  cube  octahedron  is  visible.  See  also  the 
endopentakis-icosi-dodecahedron constructed the same way [3]. 

The class of stellated Platonic and stellated Archimedean solids can all be constructed with the giant 
triangles.  In  this  stellated  case,  all  the  pyramids  point  out,  and  their  bases  form  the  underlying 
polyhedron.  For  example,  12  pentagonal  based  pyramids  can  be  connected  to  make  the  stellated 
dodecahedron.  In the case of  the stella  octangula  (figure  9),  an octahedron is  stellated and the outer 
vertices are taped to form the edges of a cube. Each of the 8 pyramids added has an apex corresponding to 
a vertex of the cube, and a base corresponding to a face of the octahedron. This illustrates duality of the 
cube and octahedron. The one to one correspondences between faces of one polyhedron and vertices of 
the other, and the one to one correspondence between the edges of each polyhedron, constitute the duality 
relationship between the two polyhedra.

5 Conclusion

We present activities and instructional strategies that exploit the capabilities of the giant triangles to bring 
out a range of geometry concepts, and promote the development of geometric thinking. In terms of the 



Van Hiele Model of Geometric Thought, the development of thinking through the visual, descriptive and 
relational  levels  are  promoted. The activities  and instructional  strategies  also encourage candidate  or 
practicing teachers to rewrite their student-teacher ‘hidden contracts’  to  promote  more  effective 
learning in the classroom.
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